Etiologie du noma: Les découvertes récentes

Dr Denise Baratti-Mayer
Geneva Study Group on Noma (GESNOMA), Division de la chirurgie plastique et reconstructive, faculté de médecine, hôpital universitaire de Genève,
24 rue Michelli-Du-Crest, 1211 Genève 14, Suisse
dbaratti@gesnoma.org

Le noma est une affection gangrénuse qui cause des destructions sévères au niveau de la face. Il frappe presque exclusivement des enfants en bas âge vivant dans les pays en voie de développement et plus particulièrement en Afrique sub-saharienne. La mortalité du noma est élevée et les survivants présentent des séquelles souvent très mutilantes qui les mettent au ban de la société (Baratti-Mayer et al 2003).

Les différents facteurs favorisant le noma, communs à la majorité des enfants de ces régions, sont la malnutrition, les maladies concomitantes entraînant une baisse des défenses immunitaires comme la rougeole ou le paludisme, et une mauvaise hygiène orale (Baratti-Mayer et al, 2003).

Dans la plupart des cas, le noma se développe sur une précédente lésion de la muqueuse buccale (aphtes au cours d'une rougeole ou, plus souvent, une gingivite nécrosante). Cette dernière affection, dans le monde occidental, frappe surtout les jeunes adultes et est pratiquement inexistante chez les enfants de moins de 12 ans (prévalence = 0,1 %) (Melnick et al. 1988). En Afrique, par contre, la GNA (gingivite nécrosante aiguë) frappe entre 11 et 50 % de la population infantile selon les régions et les études (Idigbe et al. 1999, Sheiham 1968, Enwonwu 1972, Malberger 1967).

Les signes pathognomoniques de la GNA sont le saignement gingival spontané, la décapsulation des papilles gingivales et la douleur. Elle est parfois accompagnée de signes secondaires : haleine fétide, dépôts gingivaux grisâtres, salivation excessive, fièvre et lymphoadénopathie. La reconnaissance de cette entité clinique est indispensable afin d'empêcher qu'elle n'évolue jusqu'au noma.

Chez des sujets présentant un déficit immunitaire ou chez des enfants affaiblis par la malnutrition ou par des maladies intercurrents, une hygiène buccale, même adéquate, s'avèrera insuffisante et des antibiotiques seront nécessaires afin d'éviter la progression d'une gingivite nécrosante en stomatite nécrosante avec résorption de l'os alvéolaire ou même jusqu'au noma.

Malheureusement, l'administration d'antibiotiques n'empêche souvent pas cette évolution. Ainsi, l'antibiothérapie ne peut, en aucun cas, être considérée comme une stratégie préventive.

Si les facteurs de risque du noma et son précurseur le plus fréquent sont connus, l'étiologie du noma quant à elle, reste obscure. De nombreuses théories ont été évoquées, incriminant des agents pathogènes bactériens ou viraux, sans pour autant qu'aucune hypothèse n'ait pu être confirmée.
En raison de leur action immunosuppressive, l’hypothèse a été avancée qu’une infection à virus de type Herpès pourrait jouer un rôle en préparant les conditions pour le développement de la maladie.


Ce terrain s’avère hautement favorable au développement d’une flore pathogène. Des études précédentes ont suggéré que Fusobacterium necrophorum, un pathogène parodontal, commensal intestinal des herbivores, pourrait être à l’origine du noma en contaminant les réserves alimentaires (Falkler et al 1999).

Le GESNOMA (Geneva Study group on Noma) est un groupe de recherche né à Genève en 2000 et composé d’une équipe infirmière te de terrain à Zinder (Niger) et d’une équipe scientifique pluridisciplinaire à Genève. Grâce à la collaboration avec le centre de soins pour le noma de Sentinelles et à la présence de l’équipe locale tout au long de l’année, chaque cas aigu ayant consulté a pu être inclus.

Il s’agit d’une étude prospective cas-témoins s’étant déroulée de septembre 2001 à octobre 2006. Les cas inclus étaient tous des enfants âgés de moins de 12 ans ayant consulté au Centre de prise en charge du noma de Zinder et présentant un noma en phase aiguë. 4 enfants contrôles du même village et du même âge ont été sélectionnés de manière randomisée. Les informations collectées comprenaient les données démographiques, le statut vaccinal, l’anamnèse passée et récente, surtout en ce qui concerne la malaria et la rougeole, le contact avec certains animaux et des données concernant l’alimentation et les réserves alimentaires. Chaque enfant a bénéficié d’un examen clinique général, facial et intra-buccal. Des prélèvements de fluide gingival, saliva, sang et des frottis de muqueuse orale ont été effectués.

Les objectifs de cette étude étaient d’effectuer des recherches sur les facteurs de risque du noma au Niger et de décrire et comparer la flore bactérienne orale d’enfants avec et sans noma.

Le volet virologique, chargé de détecter la présence de virus du type Herpès dans les prélèvements de muqueuse buccale ainsi que la présence d’immunoglobulines attestant d’une infection récente ou passée par l’un de ces virus, va nous permettre de vérifier si les enfants atteints de noma par rapport aux contrôles ont acquis une infection par l’un de ces virus ayant favorisé le développement de la maladie.

Facteurs favorisants souvent évoqués, les maladies intercurrentes telles que la malaria et surtout la rougeole, interviennent dans la pathogénie en affaibliSSant ultérieurement les conditions déjà précaires d’un enfant souffrant de malnutrition.

Les résultats préliminaires de notre étude semblent montrer que s’il n’y a pas de différence entre le statut vaccinal des patients et celui des contrôles, il n’y aurait pas par contre une plus importante proportion de rougeole récente chez les cas.
En raison de la rapidité d'évolution de la maladie et des régions reculées où le noma sévit, des études microbiologiques sur des cas aigus et des études comprenant une population-contrôle, sont difficiles à organiser.

La relation entre le noma et des micro-organismes spécifiques reste peu claire. Les patients consultent souvent à un stade avancé de la maladie, stade où les bactéries présentes vont plutôt être le reflet d'une contamination de la lésion que responsables de la maladie.

Le premier volet de notre étude, utilisant des analyses conventionnelles, confirme une grande diversité bactérienne, avec un pourcentage important d'espèces inconnues. Par contre, les germes précédemment indiqués comme pathogènes possibles du noma n'ont pas été mis en évidence par la première étape de nos analyses bactériennes. Pour le moment, les résultats suggèrent que si un pathogène bactérien est effectivement en cause dans la pathogénie du noma, sa prévalence doit être très basse, ou alors, sa mise en évidence doit nécessiter d'autres techniques d'investigation. Afin de répondre à cette question, deux études utilisant la technique des micro-arrays sont en cours actuellement.

L'analyse de l'enquête épidémiologique menée par le GESNOMA de septembre 2001 à octobre 2006 est en cours et les résultats ne seront rapportés que lorsque l'analyse statistique sera achevée. De manière préliminaire, nous confirmons le très jeune âge des patients, la majorité d'entre eux se situant dans la tranche d'âge de 1 à 4 ans et un grand taux de malnutrition chronique et aiguë chez la grande majorité d'entre eux. Les premières données épidémiologiques par ailleurs, semblent confirmer que les enfants atteints de noma vivent dans des conditions plus précaires que les enfants témoins.

Lorsque l'analyse sera achevée, nous obtiendrons un descriptif très complet et détaillé de la flore buccale de ces enfants ainsi que la confirmation du rôle possible des virus de type Herpès et du virus de la rougeole en tant que facteurs favorisant la maladie.

Nous sommes en outre persuadés que l'enquête épidémiologique rigoureuse conduite sur un si grand nombre de cas et de témoins, apportera des renseignements de première importance qui, nous l'espérons, pourront être exploitables pour des actions de prévention et de sensibilisation de la population.

Références


*Remerciements:* Fondation Gertrude Hirzel

*Noma Contact 2008* 33
Frottis de muqueuse effectué chez un enfant contrôle au Niger
(Photo: Denise Baratti-Mayer, GESNOMA)

Analyse des prélèvements bactériens dans le laboratoire de génomique des Hôpitaux universitaires de Genève
(Photo: Jacques Schrenzel, GESNOMA)